TABLES

NWF (Task 1 Goals			
Calibration Target Type	Calibration Metric	Metric Value	Metric Target	
Groundwater	Mean Error	0.78	+/- 2 ft	
Heads	Mean ABS Error	6.25	5ft	
VHDs	Mean ABS Error / Range	3.62%	10%	
HHDs	Mean ABS Error / Range	6.81%	10%	
THDs	Mean ABS Error / Range	3.99%	20%	
Groundwater	Mean Error	0.0010	+/- 0.0025 RSU	
Concentrations	Mean ABS Error	0.0031	0.0050 RSU	
VCDs	Mean ABS Error / Range	6.15%	10%	
TCDs	Mean ABS Error / Range	1.51%	20%	

Table 1 – Calibration target metrics

Format of Name	Description				
dsp#	Longitudinal transverse dispersivity ($lpha_{ extsf{L}}$) of HSU "#"	Yes			
kh#_pp***	Horizontal hydraulic conductivity (Kh) pilot of index "***" in HSU "#"	No			
kh1	Horizontal hydraulic conductivity (K) of layer 1	Yes			
khkv#	Horizontal-to-vertical hydraulic conductivity anisotropy ratio (Kh/Kv) of HSU "#"	Yes†			
kv#_pp***	Vertical hydraulic conductivity (Kv) pilot of index "***" in HSU "#"	No			
lbcsf_l*	Lateral boundary concentration scaling factor for Lower Floridan layers	No			
lbcsf_u*	Lateral boundary concentration scaling factor for Upper Floridan layers	No			
lc_****	Lateral boundary concentration in cell with index "*****" (function of adjacent "lbcsf_l*" or "lbcsf_u*" calibration parameters)	Yes			
n#	Porosity of HSU "#"	Yes			
riv	River conductance multiplier	No			
RivCD***	River conductance in cell with index "***" (function of "riv" calibration parameter)	Yes			
ss#	Specific storage of HSU "#"	Yes†			
sy1	Specific yield of layer 1	Yes			

Notes:

HSU1 = Surficial aquifer (model layer 1)

HSU2 = Intermediate Aquifer System (layers 2-4)

HSU3 = Upper Floridan Aquifer (layers 5-9)

HSU4 = Bucatunna clay, where present (layers 10-12)

HSU5 = Lower Floridan Aquifer (model layers 13-18)

HSU6 = Sub-Floridan formation (model layers 19-21)

† Except for layers 10-12, which contain two HSUs and wherein properties are kriged

using parameter values for each HSU zone (see documentation)

Table 2 – Calibration parameter naming conventions

*Note: Calibration parameters that are not also model parameters are used to calculate model parameter values during pre-processing

Hydrostratigraphic Unit	Units	Calibrated Value (iteration #14)	Minimum Bound	Maximum Bound			
Datia of Havinant				Bouriu			
Ratio of Horizont	ai to vertical H	Il to Vertical Hydraulic Conductivity					
Sand and Gravel Aquifer (layer 1)	-	11.7	5.00	35.0			
Intermediate Aquifer System (layers 2 - 4)	-	52.5	17.5	52.5			
Upper Floridan Aquifer (layers 5 - 9)	-	1.0	1.0	52.5			
Bucatunna Clay Confining Unit/ Undifferentiated Florida Aquifer (layers 10 - 12)	-	33.2	17.5	52.5			
Lower Floridan Aquifer (layers 13 - 18)	-	52.5	17.5	52.5			
Sub-Floridan Aquifer (layers 19-21)	-	17.5	17.5	52.5			
	Specific Stora	ge					
Intermediate Aquifer System (layers 2 - 4)	ft ⁻¹	4.4E-4	1.0E-5	1.00E-3			
Upper Floridan Aquifer (layers 5 - 9)	ft ⁻¹	1.0E-5	1.0E-5	1.00E-3			
Bucatunna Clay Confining Unit/ Undifferentiated Florida Aquifer (layers 10 - 12)	ft ⁻¹	1.3E-4	1.0E-5	1.00E-3			
Lower Floridan Aquifer (layers 13 - 18)	ft ⁻¹	1.0E-5	1.0E-5	1.00E-3			
Sub-Floridan Aquifer (layers 19-21)	ft ⁻¹	1.0E-3	1.0E-5	1.00E-3			

Table 3a – Non-pilot point calibration parameters

Hydrostratigraphic Unit	Units	Calibrated Value (iteration #14)	Minimum Bound	Maximum Bound
	Dispersivity			
Sand and Gravel Aquifer (layer 1)	ft	54.9	1.0	100.0
Intermediate Aquifer System (layers 2 - 4)	ft	54.9	1.0	100.0
Upper Floridan Aquifer (layers 5 - 9)	ft	4.6	1.0	100.0
Bucatunna Clay Confining Unit/ Undifferentiated Florida Aquifer (layers 10 - 12)	ft	1.4	1.0	100.0
Lower Floridan Aquifer (layers 13 - 18)	ft 46.4		1.0	100.0
Sub-Floridan Aquifer (layers 19-21)	ft 70.1 1.0			100.0
	Porosity			
Sand and Gravel Aquifer (layer 1)	1	0.15	5.0E-2	0.3
Intermediate Aquifer System (layers 2 - 4)	-	0.15	5.0E-2	0.3
Upper Floridan Aquifer (layers 5 - 9)	-	0.3	1.0E-5	0.3
Bucatunna Clay Confining Unit/ Undifferentiated Florida Aquifer (layers 10 - 12)	-	0.3	1.0E-5	0.3
Lower Floridan Aquifer (layers 13 - 18)	-	0.22	1.0E-5	0.3
Sub-Floridan Aquifer (layers 19-21)	-	0.3	1.0E-5	0.3

Table 3b – Non-pilot point calibration parameters

Format of Name	Description		
head_#	Head target number #		
vhd_#	Vertical head difference target number #		
hhd_#	Horizontal head difference target number #		
thd_#	Temporal head difference target number #		
rs#_**	Relative salinity target for NWF well id # for either year 19** or 20**		
rs#_ep	Relative salinity target for NWF well id # for the end of the simulation		
tcd_#	Temporal concentration difference target number #		
vcd_# Vertical concentration difference target number #			
baseflow_# Baseflow target for stress period #			
conc_offsh_I##_*_%	Offshore concentration target within layer ## at location * and for stress period %		

Group Name	Description				
head_grp1	Head targets within years 1942 - 1965	Targets Yes			
head_grp2	Head targets within years 1966 - 1990	Yes			
head_grp3	Head targets within years 1991 - 2000	Yes			
head_grp4	Head targets within years 2001 - 2015	Yes			
head_grp5	Head targets from NWF well id 9852 used as part of a vertical head difference pair	No			
vhd_grp	Vertical head difference targets	Yes			
hhd_grp	Horizontal head difference targets	Yes			
thd_grp	Temporal head difference targets	Yes			
conc_grp1	Groundwater concentration targets ranging from 0 - 150 mg/L Cl	Yes			
conc_grp2	Groundwater concentration targets ranging from 150 - 350 mg/L Cl	Yes			
conc_grp3	Groundwater concentration targets greater than 350 mg/L Cl	Yes			
tcd_grp	Temporal concentration difference targets	Yes			
vcd_grp	Vertical concentration difference targets	Yes			
baseflows	Zero-weighted baseflow targets	No			
conc_offsh07	Offshore concentration targets located in R2SWT layer 7	Yes			
conc_offsh15	Offshore concentration targets located in R2SWT layer 15	Yes			

Table 4b – Calibration target group naming conventions

	Layer(s) Flow		Instantaneous Rates (ft ³ /d)			NET Rates ("IN - OUT", ft ³ /d)			Differences (ft ³ /d)	
	Layer (3)	Direction	Pre-Dev	2000	2015	Pre-Dev	2000	2015	Pre-Dev to 2000	2000 to 2015
	1	In	2.17E+06	2.21E+06	2.23E+06	1.82E+06	1 005.00	2.025.00	1 115.05	7 225,04
	1	Out	3.57E+05	2.58E+05	2.04E+05	1.026+00	1.96E+06	2.03E+06	1.41E+05	7.22E+04
	5-9	In	8.34E+06	7.77E+06	8.52E+06	7.01E+06	C 10F:0C	7.28E+06	-9.15E+05	1 105.00
CONSTANT	(UFA)	Out	1.33E+06	1.67E+06	1.24E+06	7.016+00	6.10E+06	7.20E+UU	-9.136+03	1.18E+06
HEADS	13-18	In	5.12E+06	5.07E+06	5.24E+06	4.08E+06	3.80E+06	4.15E+06	-2.84E+05	3.59E+05
	(LFA)	Out	1.04E+06	1.27E+06	1.09E+06	4.066+00	3.60E+00	4.136+00	-2.64E+U3	3.396+03
	21	In	2.44E+03	2.46E+03	2.49E+03	-4.07E+05	-4.02E+05	-3.98E+05	5.22E+03	4.07E+03
	(SUB)	Out	4.09E+05	4.04E+05	4.00E+05	-4.07E+03	-4.UZE+U3	-3.301+03	J.22E+03	4.07E+03
RIVERS	5	In	1.55E+06	1.82E+06	2.15E+06	-1.25E+07	-1.17E+07	-1.11E+07	7.91E+05	6.00E+05
KIVEKS	(UFA)	Out	1.40E+07	1.35E+07	1.33E+07	-1.23L+07				
WELLS	Г 10	In	0.00E+00	7.20E+04	3.28E+04	0.00E+00	-4.57E+06	-3.49E+06	-4.57E+06	1.005.06
VVELLS	5-18	Out	0.00E+00	4.64E+06	3.52E+06	U.UUE+UU				1.08E+06
STORAGE	1-21	In	0.00E+00	1.77E+06	2.60E+05	0.00E+00	1 725,00	-5.84E+05	1 725,06	2 215,06
STORAGE	1-21	Out	0.00E+00	4.61E+04	8.45E+05	U.UUE+UU	1.73E+06	-3.04[+03	1.73E+06	-2.31E+06

Table 5 – Instantaneous model-wide fluxes, net fluxes, and net flux differences at the end of the pre-development ("Pre-Dev") simulation, 2000, and 2015

	Flow	Instantaneous Rates (mass/day)			NET Rates ("IN - OUT", mass/day)			Differences (mass/day)	
	Direction	Pre-Dev	2000	2015	Pre-Dev	2000	2015	Pre-Dev to 2000	2000 to 2015
CONSTANT	In	9.78E+08	9.42E+08	1.00E+09	7.80E+08	7.14E+08	0.165.00	-6.61E+07	1.02E+08
HEADS	Out	1.98E+08	2.28E+08	1.85E+08	7.6UE+U6		8.16E+08		
DIVEDS	In	1.24E+08	1.41E+08	1.62E+08	7.005.00	-7.31E+08	-6.93E+08	4.94E+07	3.75E+07
RIVERS	Out	9.05E+08	8.72E+08	8.56E+08	-7.80E+08				
VA/ELLC	In	0.00E+00	4.50E+06	2.05E+06	0.005+00	-2.85E+08	-2.18E+08	-2.85E+08	6.77E+07
WELLS	Out	0.00E+00	2.90E+08	2.20E+08	0.00E+00				
STODACE	In	0.00E+00	3.17E+08	1.66E+08	0.005.00	2 025,00	3.02E+08 9.60E+07	3.02E+08	-2.06E+08
STORAGE	Out	0.00E+00	1.47E+07	7.05E+07	0.00E+00	3.026+08			

Table 6 – Instantaneous model-wide mass fluxes, net mass fluxes, and net mass flux differences at the end of the predevelopment ("Pre-Dev") simulation, 2000, and 2015

FIGURES

Figure 2 - Model grid, county boundaries, major Florida cities/towns, lateral constant head (CHD) boundaries, pumping and injection wells, and layer 5 river boundaries.

Figure 5 – Layer 1 saline and freshwater boundaries, and layer 1 specified heads at the end of the pre-development mode (20 ft contours) based on the R2MF model.

Figure 6 – Overview of information flow between the R2MF model, FloPy, and the CR2SWT model.

Note: SSM Packages were generated by FloPy before (but not after) adding the LBCS parameters during calibration.

Figure 8 – Pilot point locations used to interpolate vertical hydraulic conductivity in the Bucatunna Clay Confining Unit (where present) / Undifferentiated Upper Floridan Aquifer. (Note: Pilot point indexing comes from the R2MF model)

Figure 9 – Pilot point locations used to interpolate storativity and hydraulic conductivities in the Intermediate Aquifer System, Upper Floridan Aquifer, Lower Floridan Aquifer, and Sub-Floridan Aquifer.

Figure 15 – Vertical groundwater concentration difference (VCD) target locations between Upper Floridan Aquifer (UFA), Lower Floridan Aquifer (LFA), and Undifferentiated Upper Floridan Aquifer locations (FAS).

Upper Floridan Aquifer.

Figure 28 – Observed versus Simulated Head Targets.

Figure 33 – Observed versus Simulated Vertical Head Difference Targets.

Figure 35 – Observed versus Simulated Horizontal Head Difference Targets.

Figure 37 – Observed versus Simulated Temporal Head Difference Targets.

Figure 40 – Observed versus Simulated Concentration Targets in mg/L TDS (or parts per million, "ppm").

Figure 44 – Observed versus Simulated Vertical Concentration Difference Targets in mg/L TDS (or parts per million, "ppm").

Figure 46 – Observed versus Simulated Temporal Concentration Difference Targets in mg/L TDS (or parts per million, "ppm").

Figure 47 – Leakage into the Upper Floridan Aquifer (layer 5) from the Intermediate Aquifer System (layer 4) at the end of pre-development.

